您现在的位置是:首页 > 测评

CT的滤波参数?工业CT技术和原理的图书目录

867HJcbeopms 2024-04-13

一、电阻的使用要考虑哪些性能参数

电阻

容差:通用场合选用1%精读,当有特殊要求比如输出电压精度要求时选用更小的

选择比率:当阻值不是很重要时,比如分压器,以减少电路中不同阻值种类数目以实现大批量采购节约成本

最大电压:电阻其实也可以被击穿,高压应用时要注意

温度系数:大多数电阻都有很小的温度系数(50~250ppm每度),电阻发热时,线绕电阻的温度系数会有较大变化

额定功率:一般电阻功耗为额定值一半

脉冲功率:在较短时间内,线绕电阻可以承受远大于其额定功率的冲击,但非线绕电阻不行

电容

铝电解电容大容量小体积

钽电容中等电容量

陶瓷电容定时与信号电路

多层陶瓷电容低ESR场合

塑胶电容高dv/dt场合

容差:典型值正负20%,电解电容还要差好多

ESR:等效串联电阻,设计大容量滤波器时ESR比容量重要

老化:“电源寿命1000h”实际就是对电解电容电容而言,如果把电源放到实际温度条件或者工作几年就要选择2000h到5000h

肖特基二极管

常用在整流器中,正向导通电压小,没有反向恢复时间

整流二极管

反向恢复:二极管正向导通后在很短时间内能够反向流过电流这段时间叫反向恢复时间,这对变换器的效率非常不利

但并不是越快越好,会产生快速的电压电流尖锋

晶体管(BJT)

脉冲电流:一般BJT上不会提到脉冲电流(除非专为电源设计),取额定直流电流的两倍

放大倍数:一般假定为10,不管手册数据如何

晶体管(MOSFET)

功率损耗:导通损耗+门极充电损耗+开关导通损

导通损耗:当MOSFET全部导通时漏源极之间存在一个电阻,导通损耗大小取决于管中电流大小,而且电阻随温升增大

门极充电损耗:由于MOSFET有一个相当大的等效门极电容引起

开关导通损:在开通或关断转换的任何时候,晶体管上同时既有电压又有电流产生功率损耗

最大门极电压:通常20V

电阻型号命名方法分类及主要特性参数等

导电体对电流的阻碍作用称着电阻,用符号R表示,单位为欧姆、千欧、兆欧,分别用Ω、KΩ、MΩ表示。

一、电阻的型号命名方法:

国产电阻器的型号由四部分组成(不适用敏感电阻)

第一部分:主称,用字母表示,表示产品的名字。如R表示电阻,W表示电位器。

第二部分:材料,用字母表示,表示电阻体用什么材料组成,T-碳膜、H-合成碳膜、S-有机实心、N-无机实心、J-金属膜、Y-氮化膜、C-沉积膜、I-玻璃釉膜、X-线绕。

第三部分:分类,一般用数字表示,个别类型用字母表示,表示产品属于什么类型。1-普通、2-普通、3-超高频、4-高阻、5-高温、6-精密、7-精密、8-高压、9-特殊、G-高功率、T-可调。

第四部分:序号,用数字表示,表示同类产品中不同品种,以区分产品的外型尺寸和性能指标等

例如:R T 1 1型普通碳膜电阻a1}

二、电阻器的分类

1、线绕电阻器:通用线绕电阻器、精密线绕电阻器、大功率线绕电阻器、高频线绕电阻器。

2、薄膜电阻器:碳膜电阻器、合成碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、化学沉积膜电阻器、玻璃釉膜电阻器、金属氮化膜电阻器。

3、实心电阻器:无机合成实心碳质电阻器、有机合成实心碳质电阻器。

4、敏感电阻器:压敏电阻器、热敏电阻器、光敏电阻器、力敏电阻器、气敏电阻器、湿敏电阻器。

三、主要特性参数

1、标称阻值:电阻器上面所标示的阻值。

2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。

允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级

3、额定功率:在正常的大气压力90-106.6KPa及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。

线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、4、8、10、16、25、40、50、75、100、150、250、500

非线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、5、10、25、50、100

4、额定电压:由阻值和额定功率换算出的电压。

5、最高工作电压:允许的最大连续工作电压。在低气压工作时,最高工作电压较低。

6、温度系数:温度每变化1℃所引起的电阻值的相对变化。温度系数越小,电阻的稳定性越好。阻值随温度升高而增大的为正温度系数,反之为负温度系数。

7、老化系数:电阻器在额定功率长期负荷下,阻值相对变化的百分数,它是表示电阻器寿命长短的参数。

8、电压系数:在规定的电压范围内,电压每变化1伏,电阻器的相对变化量。

9、噪声:产生于电阻器中的一种不规则的电压起伏,包括热噪声和电流噪声两部分,热噪声是由于导体内部不规则的电子自由运动,使导体任意两点的电压不规则变化。

四、电阻器阻值标示方法

1、直标法:用数字和单位符号在电阻器表面标出阻值,其允许误差直接用百分数表示,若电阻上未注偏差,则均为±20%。

2、文字符号法:用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,其允许偏差也用文字符号表示。符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值。

表示允许误差的文字符号

文字符号 D F G J K M

允许偏差±0.5%±1%±2%±5%±10%±20%

3、数码法:在电阻器上用三位数码表示标称值的标志方法。数码从左到右,第一、二位为有效值,第三位为指数,即零的个数,单位为欧。偏差通常采用文字符号表示。

4、色标法:用不同颜色的带或点在电阻器表面标出标称阻值和允许偏差。国外电阻大部分采用色标法。

黑-0、棕-1、红-2、橙-3、黄-4、绿-5、蓝-6、紫-7、灰-8、白-9、金-±5%、银-±10%、无色-±20%

当电阻为四环时,最后一环必为金色或银色,前两位为有效数字,第三位为乘方数,第四位为偏差。当电阻为五环时,最后一环与前面四环距离较大。前三位为有效数字,第四位为乘方数,第五位为偏差。

五、常用电阻器

1、电位器

电位器是一种机电元件,他靠电刷在电阻体上的滑动,取得与电刷位移成一定关系的输出电压。

1.1合成碳膜电位器

电阻体是用经过研磨的碳黑,石墨,石英等材料涂敷于基体表面而成,该工艺简单,是目前应用最广泛的电位器。特点是分辩力高耐磨性好,寿命较长。缺点是电流噪声,非线性大,耐潮性以及阻值稳定性差。

1.2有机实心电位器

有机实心电位器是一种新型电位器,它是用加热塑压的方法,将有机电阻粉压在绝缘体的凹槽内。有机实心电位器与碳膜电位器相比具有耐热性好、功率大、可靠性高、耐磨性好的优点。但温度系数大、动噪声大、耐潮性能差、制造工艺复杂、阻值精度较差。在小型化、高可靠、高耐磨性的电子设备以及交、直流电路中用作调节电压、电流。

1.3金属玻璃铀电位器

用丝网印刷法按照一定图形,将金属玻璃铀电阻浆料涂覆在陶瓷基体上,经高温烧结而成。特点是:阻值范围宽,耐热性好,过载能力强,耐潮,耐磨等都很好,是很有前途的电位器品种,缺点是接触电阻和电流噪声大。

1.4绕线电位器

绕线电位器是将康铜丝或镍铬合金丝作为电阻体,并把它绕在绝缘骨架上制成。绕线电位器特点是接触电阻小,精度高,温度系数小,其缺点是分辨力差,阻值偏低,高频特性差。主要用作分压器、变阻器、仪器中调零和工作点等。

1.5金属膜电位器

金属膜电位器的电阻体可由合金膜、金属氧化膜、金属箔等分别组成。特点是分辩力高、耐高温、温度系数小、动噪声小、平滑性好。

1.6导电塑料电位器

用特殊工艺将DAP(邻苯二甲酸二稀丙脂)电阻浆料覆在绝缘机体上,加热聚合成电阻膜,或将DAP电阻粉热塑压在绝缘基体的凹槽内形成的实心体作为电阻体。特点是:平滑性好、分辩力优异耐磨性好、寿命长、动噪声小、可靠性极高、耐化学腐蚀。用于宇宙装置、导弹、飞机雷达天线的伺服系统等。

1.7带开关的电位器

有旋转式开关电位器、推拉式开关电位器、推推开关式电位器

1.8预调式电位器

预调式电位器在电路中,一旦调试好,用蜡封住调节位置,在一般情况下不再调节。

1.9直滑式电位器

采用直滑方式改变电阻值。

1.10双连电位器

有异轴双连电位器和同轴双连电位器

1.11无触点电位器

无触点电位器消除了机械接触,寿命长、可靠性高,分光电式电位器、磁敏式电位器等。

2、实芯碳质电阻器

用碳质颗粒壮导电物质、填料和粘合剂混合制成一个实体的电阻器。

特点:价格低廉,但其阻值误差、噪声电压都大,稳定性差,目前较少用。

3、绕线电阻器

用高阻合金线绕在绝缘骨架上制成,外面涂有耐热的釉绝缘层或绝缘漆。

绕线电阻具有较低的温度系数,阻值精度高,稳定性好,耐热耐腐蚀,主要做精密大功率电阻使用,缺点是高频性能差,时间常数大。

4、薄膜电阻器

用蒸发的方法将一定电阻率材料蒸镀于绝缘材料表面制成。主要如下:

4.1碳膜电阻器

将结晶碳沉积在陶瓷棒骨架上制成。碳膜电阻器成本低、性能稳定、阻值范围宽、温度系数和电压系数低,是目前应用最广泛的电阻器。

4.2金属膜电阻器。

用真空蒸发的方法将合金材料蒸镀于陶瓷棒骨架表面。

金属膜电阻比碳膜电阻的精度高,稳定性好,噪声,温度系数小。在仪器仪表及通讯设备中大量采用。

4.3金属氧化膜电阻器

在绝缘棒上沉积一层金属氧化物。由于其本身即是氧化物,所以高温下稳定,耐热冲击,负载能力强。

4.4合成膜电阻

将导电合成物悬浮液涂敷在基体上而得,因此也叫漆膜电阻。

由于其导电层呈现颗粒状结构,所以其噪声大,精度低,主要用他制造高压,高阻,小型电阻器。

5、金属玻璃铀电阻器

将金属粉和玻璃铀粉混合,采用丝网印刷法印在基板上。

耐潮湿,高温,温度系数小,主要应用于厚膜电路。

6、贴片电阻SMT

片状电阻是金属玻璃铀电阻的一种形式,他的电阻体是高可靠的钌系列玻璃铀材料经过高温烧结而成,电极采用银钯合金浆料。体积小,精度高,稳定性好,由于其为片状元件,所以高频性能好。

电容

电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合,旁路,滤波,调谐回路,能量转换,控制电路等方面。用C表示电容,电容单位有法拉(F)、微法拉(uF)、皮法拉(pF),1F=10^6uF=10^12pF

一、电容器的型号命名方法

国产电容器的型号一般由四部分组成(不适用于压敏、可变、真空电容器)。依次分别代表名称、材料、分类和序号。

第一部分:名称,用字母表示,电容器用C。

第二部分:材料,用字母表示。

第三部分:分类,一般用数字表示,个别用字母表示。

第四部分:序号,用数字表示。

用字母表示产品的材料:A-钽电解、B-聚苯乙烯等非极性薄膜、C-高频陶瓷、D-铝电解、E-其它材料电解、G-合金电解、H-复合介质、I-玻璃釉、J-金属化纸、L-涤纶等极性有机薄膜、N-铌电解、O-玻璃膜、Q-漆膜、T-低频陶瓷、V-云母纸、Y-云母、Z-纸介

二、电容器的分类

1、按照结构分三大类:固定电容器、可变电容器和微调电容器。

2、按电解质分类有:有机介质电容器、无机介质电容器、电解电容器和空气介

质电容器等。

3、按用途分有:高频旁路、低频旁路、滤波、调谐、高频耦合、低频耦合、小型

电容器。

4、高频旁路:陶瓷电容器、云母电容器、玻璃膜电容器、涤纶电容器、玻璃釉电容

器。

5、低频旁路:纸介电容器、陶瓷电容器、铝电解电容器、涤纶电容器。

6、滤波:铝电解电容器、纸介电容器、复合纸介电容器、液体钽电容器。

7、调谐:陶瓷电容器、云母电容器、玻璃膜电容器、聚苯乙烯电容器。

8、高频耦合:陶瓷电容器、云母电容器、聚苯乙烯电容器。

9、低耦合:纸介电容器、陶瓷电容器、铝电解电容器、涤纶电容器、固体钽电容

器。

10、小型电容:金属化纸介电容器、陶瓷电容器、铝电解电容器、聚苯乙烯电容器、固体钽电容器、玻璃釉电容器、金属化涤纶电容器、聚丙烯电容器、云母电容器。

三、常用电容器

1、铝电解电容器

用浸有糊状电解质的吸水纸夹在两条铝箔中间卷绕而成,薄的化氧化膜作介质的电容器.因为氧化膜有单向导电性质,所以电解电容器具有极性.容量大,能耐受大的脉动电流,容量误差大,泄漏电流大;普通的不适于在高频和低温下应用,不宜使用在25kHz以上频率低频旁路、信号耦合、电源滤波。

电容量:0.47~10000u

额定电压:6.3~450V

主要特点:体积小,容量大,损耗大,漏电大

应用:电源滤波,低频耦合,去耦,旁路等

2、钽电解电容器(CA)铌电解电容(CN)

用烧结的钽块作正极,电解质使用固体二氧化锰温度特性、频率特性和可靠性均优于普通电解电容器,特别是漏电流极小,贮存性良好,寿命长,容量误差小,而且体积小,单位体积下能得到最大的电容电压乘积对脉动电流的耐受能力差,若损坏易呈短路状态超小型高可靠机件中。

电容量:0.1~1000u

额定电压:6.3~125V

主要特点:损耗、漏电小于铝电解电容

应用:在要求高的电路中代替铝电解电容

3、薄膜电容器

结构与纸质电容器相似,但用聚脂、聚苯乙烯等低损耗塑材作介质频率特性好,介电损耗小不能做成大的容量,耐热能力差滤波器、积分、振荡、定时电路。

a聚酯(涤纶)电容(CL)

电容量:40p~4u

额定电压:63~630V

主要特点:小体积,大容量,耐热耐湿,稳定性差

应用:对稳定性和损耗要求不高的低频电路

b聚苯乙烯电容(CB)

电容量:10p~1u

额定电压:100V~30KV

主要特点:稳定,低损耗,体积较大

应用:对稳定性和损耗要求较高的电路

c聚丙烯电容(CBB)

电容量:1000p~10u

额定电压:63~2000V

主要特点:性能与聚苯相似但体积小,稳定性略差

应用:代替大部分聚苯或云母电容,用于要求较高的电路

4、瓷介电容器

穿心式或支柱式结构瓷介电容器,它的一个电极就是安装螺丝。引线电感极小,频率特性好,介电损耗小,有温度补偿作用不能做成大的容量,受振动会引起容量变化特别适于高频旁路。

a高频瓷介电容(CC)

电容量:1~6800p

额定电压:63~500V

主要特点:高频损耗小,稳定性好

应用:高频电路

b低频瓷介电容(CT)

电容量:10p~4.7u

额定电压:50V~100V

主要特点:体积小,价廉,损耗大,稳定性差

应用:要求不高的低频电路

5、独石电容器

(多层陶瓷电容器)在若干片陶瓷薄膜坯上被覆以电极桨材料,叠合后一次绕结成一块不可分割的整体,外面再用树脂包封而成小体积、大容量、高可靠和耐高温的新型电容器,高介电常数的低频独石电容器也具有稳定的性能,体积极小,Q值高容量误差较大噪声旁路、滤波器、积分、振荡电路。

容量范围:0.5PF~1UF

耐压:二倍额定电压。

电容量大、体积小、可靠性高、电容量稳定,耐高温耐湿性好等。

应用范围:广泛应用于电子精密仪器。各种小型电子设备作谐振、耦合、滤波、旁路。

6、纸质电容器

一般是用两条铝箔作为电极,中间以厚度为0.008~0.012mm的电容器纸隔开重叠卷绕而成。制造工艺简单,价格便宜,能得到较大的电容量

一般在低频电路内,通常不能在高于3~4MHz的频率上运用。油浸电容器的耐压比普通纸质电容器高,稳定性也好,适用于高压电路。

7、微调电容器

电容量可在某一小范围内调整,并可在调整后固定于某个电容值。瓷介微调电容器的Q值高,体积也小,通常可分为圆管式及圆片式两种。云母和聚苯乙烯介质的通常都采用弹簧式东,结构简单,但稳定性较差。线绕瓷介微调电容器是拆铜丝〈外电极〉来变动电容量的,故容量只能变小,不适合在需反复调试的场合使用。

a空气介质可变电容器

可变电容量:100~1500p

主要特点:损耗小,效率高;可根据要求制成直线式、直线波长式、直线频率式及对数式等

应用:电子仪器,广播电视设备等

b薄膜介质可变电容器

可变电容量:15~550p

主要特点:体积小,重量轻;损耗比空气介质的大

应用:通讯,广播接收机等

c薄膜介质微调电容器

可变电容量:1~29p

主要特点:损耗较大,体积小

应用:收录机,电子仪器等电路作电路补偿

d陶瓷介质微调电容器

可变电容量:0.3~22p

主要特点:损耗较小,体积较小

应用:精密调谐的高频振荡回路

8、陶瓷电容器

用高介电常数的电容器陶瓷〈钛酸钡一氧化钛〉挤压成圆管、圆片或圆盘作为介质,并用烧渗法将银镀在陶瓷上作为电极制成。它又分高频瓷介和低频瓷介两种。具有小的正电容温度系数的电容器,用于高稳定振荡回路中,作为回路电容器及垫整电容器。低频瓷介电容器限于在工作频率较低的回路中作旁路或隔直流用,或对稳定性和损耗要求不高的场合〈包括高频在内〉。这种电容器不宜使用在脉冲电路中,因为它们易于被脉冲电压击穿。高频瓷介电容器适用于高频电路。

9、玻璃釉电容器(CI)

由一种浓度适于喷涂的特殊混合物喷涂成薄膜而成,介质再以银层电极经烧结而成"独石"结构性能可与云母电容器媲美,能耐受各种气候环境,一般可在200℃或更高温度下工作,额定工作电压可达500V,损耗tgδ0.0005~0.008

电容量:10p~0.1u

额定电压:63~400V

主要特点:稳定性较好,损耗小,耐高温(200度)

应用:脉冲、耦合、旁路等电路

四、电容器主要特性参数

1、标称电容量和允许偏差

标称电容量是标志在电容器上的电容量。

电容器实际电容量与标称电容量的偏差称误差,在允许的偏差范围称精度。

精度等级与允许误差对应关系:00(01)-±1%、0(02)-±2%、Ⅰ-±5%、Ⅱ-±10%、Ⅲ-±20%、Ⅳ-(+20%-10%)、Ⅴ-(+50%-20%)、Ⅵ-(+50%-30%)

一般电容器常用Ⅰ、Ⅱ、Ⅲ级,电解电容器用Ⅳ、Ⅴ、Ⅵ级,根据用途选取。

2、额定电压

在最低环境温度和额定环境温度下可连续加在电容器的最高直流电压有效值,一般直接标注在电容器外壳上,如果工作电压超过电容器的耐压,电容器击穿,造成不可修复的永久损坏。

3、绝缘电阻

直流电压加在电容上,并产生漏电电流,两者之比称为绝缘电阻.

当电容较小时,主要取决于电容的表面状态,容量〉0.1uf时,主要取决于介质的性能,绝缘电阻越大越好。

电容的时间常数:为恰当的评价大容量电容的绝缘情况而引入了时间常数,他等于电容的绝缘电阻与容量的乘积。

4、损耗

电容在电场作用下,在单位时间内因发热所消耗的能量叫做损耗。各类电容都规定了其在某频率范围内的损耗允许值,电容的损耗主要由介质损耗,电导损耗和电容所有金属部分的电阻所引起的。

在直流电场的作用下,电容器的损耗以漏导损耗的形式存在,一般较小,在交变电场的作用下,电容的损耗不仅与漏导有关,而且与周期性的极化建立过程有关。

5、频率特性

随着频率的上升,一般电容器的电容量呈现下降的规律。

五、电容器容量标示

1、直标法

用数字和单位符号直接标出。如01uF表示0.01微法,有些电容用“R”表示小数点,如R56表示0.56微法。

2、文字符号法

用数字和文字符号有规律的组合来表示容量。如p10表示0.1pF,1p0表示1pF,6P8表示6.8pF, 2u2表示2.2uF.

3、色标法

用色环或色点表示电容器的主要参数。电容器的色标法与电阻相同。

电容器偏差标志符号:+100%-0--H、+100%-10%--R、+50%-10%--T、+30%-10%--Q、+50%-20%--S、+80%-20%--Z。

二极管的主要参数

无论是设计开发,还是维修维护,都要与二极管打交道。而二极管作为一种分立元件,在日常生活中是极为常见的。而使用起来却并不那么简单,需要知道一些它的特性参数。具体有下面几种:

1.最大整流电流 IF。指二极管长期运行时允许通过的最大正向平均电流。该值与 PN结的结面积和二极管工作时的散热条件有关。在实际应用中,如果二极管的正向工作电流越过该值,并且没有加额外的散热措施的话,则会烧坏二极管。

2.最大反向工作电压 UR。指二极管在工作时允许所允许加的最大反向电压。超过此值就有可能将二极管击穿。通常取反向击穿电压的一半作为UR。

3.反向电流 IR。指二极管未击穿时的反向电流值。此值越小,二极管的单向导电性越好。此值与温度有密切关系,在高温运行时要特别注意。

4.最高工作频率 fM。主要受到 PN结的结电容限制。超过此值,二极管的单向导电性将受到影响。

三极管的参数反映了三极管各种性能的指标,是分析三极管电路和选用三极管的依据。

一、电流放大系数

1.共发射极电流放大系数

(1)共发射极直流电流放大系数,它表示三极管在共射极连接时,某工作点处直流电流IC与IB的比值,当忽略ICBO时

(2)共发射极交流电流放大系数β它表示三极管共射极连接、且UCE恒定时,集电极电流变化量ΔIC与基极电流变化量ΔIB之比,即

管子的β值大小时,放大作用差;β值太大时,工作性能不稳定。因此,一般选用β为30~80的管子。

2.共基极电流放大系数

共基极直流电流放大系数它表示三极管在共基极连接时,某工作点处IC与 IE的比值。在忽略ICBO的情况下

(2)共基极交流电流放大系数α,它表示三极管作共基极连接时,在UCB恒定的情况下,IC和IE的变化量之比,即:

通常在ICBO很小时,与β,与α相差很小,因此,实际使用中经常混用而不加区别。

二、极间反向电流

1.集-基反向饱和电流ICBO

ICBO是指发射极开路,在集电极与基极之间加上一定的反向电压时,所对应的反向电流。它是少子的漂移电流。在一定温度下,ICBO是一个常量。随着温度的升高ICBO将增大,它是三极管工作不稳定的主要因素。在相同环境温度下,硅管的ICBO比锗管的ICBO小得多。

2.穿透电流ICEO

ICEO是指基极开路,集电极与发射极之间加一定反向电压时的集电极电流。ICEO与ICBO的关系为:

ICEO= ICBO+ ICBO=(1+)ICBO GS0125

该电流好象从集电极直通发射极一样,故称为穿透电流。ICEO和ICBO一样,也是衡量三极管热稳定性的重要参数。

三、频率参数

频率参数是反映三极管电流放大能力与工作频率关系的参数,表征三极管的频率适用范围。

1.共射极截止频率fβ

三极管的β值是频率的函数,中频段β=βo几乎与频率无关,但是随着频率的增高,β值下降。当β值下降到中频段βO1/倍时,所对应的频率,称为共射极截止频率,用fβ表示。

2.特征频率fT

当三极管的β值下降到β=1时所对应的频率,称为特征频率。在fβ~fT的范围内,β值与f几乎成线性关系,f越高,β越小,当工作频率f>fT,时,三极管便失去了放大能力。

四、极限参数

1.最大允许集电极耗散功率PCM

PCM是指三极管集电结受热而引起晶体管参数的变化不超过所规定的允许值时,集电极耗散的最大功率。当实际功耗Pc大于PCM时,不仅使管子的参数发生变化,甚至还会烧坏管子。PCM可由下式计算:

PCM=ICUCE GS0126

当已知管子的PCM时,利用上式可以在输出特性曲线上画出PCM曲线。

2.最大允许集电极电流ICM

当IC很大时,β值逐渐下降。一般规定在β值下降到额定值的2/3(或1/2)时所对应的集电极电流为ICM当IC>ICM时,β值已减小到不实用的程度,且有烧毁管子的可能。

3.反向击穿电压BVCEO与BVCEO

BVCEO是指基极开路时,集电极与发射极间的反向击穿电压。

BVCBO是指发射极开路时,集电极与基极间的反向击穿电压。一般情况下同一管子的

BVCEO(0.5~0.8)BVCBO。三极管的反向工作电压应小于击穿电压的(1/2~1/3),以保证管子安全可靠地工作。

三极管的3个极限参数PCM、ICM、BVCEO和前面讲的临界饱和线、截止线所包围的区域,便是三极管安全工作的线性放大区。一般作放大用的三极管,均须工作于此区。

二、求常用光耦参数表

常用参数

正向压降VF:二极管通过的正向电流为规定值时,正负极之间所产生的电压降。

正向电流IF:在被测管两端加一定的正向电压时二极管中流过的电流。

反向电流IR:在被测管两端加规定反向工作电压VR时,二极管中流过的电流。

反向击穿电压VBR::被测管通过的反向电流IR为规定值时,在两极间所产生的电压降。

结电容CJ:在规定偏压下,被测管两端的电容值。

反向击穿电压V(BR)CEO:发光二极管开路,集电极电流IC为规定值,集电极与发射集间的电压降。

输出饱和压降VCE(sat):发光二极管工作电流IF和集电极电流IC为规定值时,并保持IC/IF≤CTRmin时(CTRmin在被测管技术条件中规定)集电极与发射极之间的电压降。

反向截止电流ICEO:发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。

电流传输比CTR:输出管的工作电压为规定值时,输出电流和发光二极管正向电流之比为电流传输比CTR。

脉冲上升时间tr、下降时间tf:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输出脉冲前沿幅度的10%到90%,所需时间为脉冲上升时间tr。从输出脉冲后沿幅度的90%到10%,所需时间为脉冲下降时间tf。

传输延迟时间tPHL、tPLH:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输入脉冲前沿幅度的50%到输出脉冲电平下降到1.5V时所需时间为传输延迟时间tPHL。从输入脉冲后沿幅度的50%到输出脉冲电平上升到1.5V时所需时间为传输延迟时间tPLH。

入出间隔离电容CIO:光耦合器件输入端和输出端之间的电容值。

入出间隔离电阻RIO:半导体光耦合器输入端和输出端之间的绝缘电阻值。

入出间隔离电压VIO:光耦合器输入端和输出端之间绝缘耐压值。

三、工业CT技术和原理的图书目录

前言

入门篇

第1章引言

1.1从“盒子里装的是什么”谈起

1.2用未知数X定义的射线

1.3无胶片照相技术

1.4“要把西瓜切开才能看清楚”

1.5传统断层成像技术

1.6怎样才能免除重叠图像的干扰

1.7历史性的突破

1.8现代工业CT实例

参考文献

第2章预备知识

2.1数字化图像

2.2投影

2.3理解图像重建的概念

2.4投影数据和正弦图

2.5与CT应用相关的几个物理问题

2.5.1射线与物质的相互作用

2.5.2不可抗拒的统计规律

2.5.3部分体积效应

2.5.4射线的多色性和硬化

参考文献

第3章工业CT的基本组成

3.1工业CT常用的两种扫描模式

3.2工业CT系统常用的射线源

3.3射线探测器和准直器

3.3.1分立探测器

3.3.2面探测器

3.3.3准直器

3.4数据采集系统

3.5扫描机械系统

3.6计算机硬件和软件

3.7辅助系统(辅助电源和安全系统)

参考文献

第4章工业CT系统的性能和指标

4.1工业CT的性能参数概述

4.2图像对比度

4.3点扩散函数和调制传递函数

4.3.1点扩散函数对CT图像的影响

4.3.2调制传递函数对CT图像的影响

4.4噪声对CT图像的影响

4.5 CDD曲线

4.6伪像概述

4.7工业CT系统的验收和指标测定

4.7.1检测空间分辨率的传统模体和方法

4.7.2检测密度分辨率的传统模体和方法

4.7.3圆盘法检测空间分辨率和密度分辨率

参考文献

第5章工业CT的安装、调试和使用

5.1安装安全注意事项

5.2工业CT的安装与预调

5.2.1土建施工

5.2.2主体设备机械安装

5.2.3主机设备电器安装

5.2.4机电系统冷运行

5.2.5 X射线机出束试验和正式运行前的辐射安全检查

5.2.6探测器一准直器位置的进一步调整

5.3工业CT系统的精细调整

5.3.1探测器效率校正

5.3.2 DR扫描流程和工业CT各种扫描流程调试

5.3.3旋转中心位置的确定——薄壁圆筒法

5.3.4旋转中心在不同扫描位置下的校正

5.4 CT系统总体性能指标测定和功能调试

5.4.1工业CT切层位置的确定

5.4.2 CT值的标准化处理和标定

5.4.3功能调试和总体性能指标测定

5.5工业CT运行操作

5.5.1工业CT系统运行需要注意的事项

5.5.2工业CT系统工作流程

5.6工业CT的辐射安全措施

5.6.1安全系统的构成

5.6.2安全联锁及故障处理流程

5.7工业CT测试结果的观测

参考文献

第6章工业CT系统的选择和设计

6.1工业CT系统的两类技术参数

6.2空间分辨率和技术数据之间的关系

6.3密度分辨率和技术数据之间的关系

6.4选择CT系统时值得注意的几个问题

6.4.1工件尺寸对系统性能的影响

6.4.2探测器尺寸及数量的选择

6.4.3测试技术指标时的技术条件

6.4.4三维图像重建和三维反演技术的应用

6.4.5 DR方法的有限检测能力

6.4.6扫描方式的选择

6.5工业CT系统设计举例

参考文献

中级篇

第7章 CT扫描数据采集技术

7.1 X射线在物质中的能量转移

7.2比释动能和X射线强度的估算方法

7.3辐射探测器

7.3.1工业CT用辐射探测器的主要特点

7.3.2工业CT常用辐射探测器

7.4探测器效率

7.4.1量子转换效率

7.4.2准直器

7.4.3 x射线在探测器阵列中的能量沉积

7.5辐射探测器测量数据的预处理

7.5.1射线源强度的校正

7.5.2辐射探测效率器的能量响应特性的校正

7.6数据采集系统的电子电路

7.6.1关于电子电路的基本考虑

7.6.2电子电路的结构

参考文献

第8章工业CT图像重建算法

8.1预备知识

8.1.1 Radon变换

8.1.2 Fourier变换

8.1.3中心切片定理

8.2平行束投影的几种重建算法

8.2.1直接Fourier变换重建算法

8.2.2滤波反投影重建算法

8.2.3 Radon反演算法

8.3平行束投影的反投影滤波重建算法

8.3.1一元函数的Hilbert变换

8.3.2有限区间上的Hilbert逆变换

8.3.3图像的Hilbert变换

8.3.4图像的Hilbert变换图像与投影的关系

8.4扇束滤波反投影重建算法

8.4.1扇束扫描几何参数和坐标系统

8.4.2扇束滤波反投影重建公式

8.5 RT扫描模式的反投影滤波重建算法

8.5.1转台多次偏置的RT扫描模式

8.5.2转台单侧多次偏置的RT扫描的DBP公式

8.5.3算法实现步骤

8.5.4数值实验

8.6迭代重建算法

8.6.1 CT图像重建离散模型

8.6.2离散模型的常用求解方法

8.6.3代数重建算法

8.6.4优化问题和:Richardson迭代算法

8.6.5 EM迭代算法

8.6.6子集排序迭代算法

8.7锥束CT重建算法简介

参考文献

第9章计算机仿真与CT伪像

9.1计算机仿真

9.2计算机仿真在工业CT中的应用

9.3仿真头部模型和仿真数据的产生

9.4物理相关性能的计算机仿真

9.5 CT伪像的仿真实验

9.6伪像形貌分类

参考文献

第10章 CT相关技术

10.1三维图像的显示(可视化)方法

10.1.1基于等值面的体绘制

10.1.2直接体绘制

第11章相衬CT

文章版权声明:除非注明,否则均为兜雅网原创文章,转载或复制请以超链接形式并注明出处。